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Naturally occurring van der Waals heterostructure
lengenbachite with strong in-plane structural and optical
anisotropy
Arindam Dasgupta 1, Xiaodong Yang 1✉ and Jie Gao1,2✉

Lengenbachite is a naturally occurring layered mineral formed with alternating stacks of two constituent PbS-like and M2S3-like
two-dimensional (2D) material layers due to the phase segregation process during the formation. Here, we demonstrate to achieve
van der Waals (vdW) heterostructures of lengenbachite down to a few layer-pair thickness by mechanical exfoliation of bulk
lengenbachite mineral. The incommensurability between the constituent isotropic 2D material layers makes the formed vdW
heterostructure exhibit strong in-plane structural anisotropy, which leads to highly anisotropic optical responses in lengenbachite
thin flakes, including anisotropic Raman scattering, linear dichroism, and anisotropic third-harmonic generation. Moreover, we
exploit the nonlinear optical anisotropy for polarization-dependent intensity modulation of the converted third-harmonic optical
vortices. Our study establishes lengenbachite as a new natural vdW heterostructure-based 2D material with unique optical
properties for realizing anisotropic optical devices for photonic integrated circuits and optical information processing.
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INTRODUCTION
Structural anisotropy in van der Waals (vdW) materials enables the
variations in their physical properties when probed along different
spatial directions. Therefore, in-plane anisotropy provides another
degree of freedom for tailoring the vibrational, optical and
electrical responses of vdW materials when excited with an
external perturbation. Black phosphorus (BP), ReS2, ReSe2, and
group-IV monochalcogenides such as GeSe are a few examples of
such anisotropic vdW materials, which have been demonstrated
for achieving new functionalities that are not possible with
isotropic vdW materials, such as polarization-sensitive photode-
tectors1–4, modulators5, synaptic devices6, digital inverters7, and
anisotropic resistors8 for photonic integrated circuits. In addition
to linear optical properties, anisotropy in these vdW materials also
gives rise to exciting nonlinear optical effects9–13 which can be
exploited for developing high-performance nanoscale optical
devices for all-optical signal processing in telecommunications.
Previously, anisotropic third-harmonic generation (THG) has also
been utilized for rapid optical probing and characterization of the
crystal symmetries and layer thickness in BP12, ReS29, and GeSe10.
On the other hand, vdW heterostructures created by combining

different 2D materials have been widely studied to exhibit tailored
electronic band structures, carrier mobility, optical and magnetic
properties14–17. Apart from the nature of the vdW interaction,
intercalation of ions or molecules, strain engineering, and
introduction of a twist angle between stacked layers have also
been explored as possible ways to modulate the electrical and
optical properties of vdW heterostructures18,19. Recently, a
capillary force-driven roll-up method for the realization of high-
order vdW superlattices has been demonstrated, providing
another way to control the nature of quantum confinement,
dimensionality, and electronic band structures of these artificial
materials20. These fabricated vdW heterostructures facilitate
diverse functionalities beyond the reach of existing materials to

realize nanoscale photonic and optoelectronic devices for optical
communication and sensing21, transistors22, photodetectors23,24,
and ultrafast lasers25. Until now, layer-by-layer mechanical
restacking and sequential synthesis of individual layers of different
vdW materials have been the most common practice for
designing vdW heterostructures25–30. However, these procedures
are cumbersome and susceptible to improper lattice alignment
and the presence of undesirable interlayer adsorbates. Recent
demonstration of the mechanical and liquid-phase exfoliation of
natural vdW superlattices31 including franckeite32–36 and cylin-
drite37,38 provides a new way for fabricating ultrathin air-stable
and adsorbate-free vdW heterostructures with proper lattice
orientations. Therefore, exploring the exfoliation of other natural
vdW superlattices is important in the context of producing new
types of vdW heterostructures with intriguing functionalities.
With that hindsight, here we study the in-plane structural and

optical anisotropy of mechanically exfoliated ultrathin flakes of
lengenbachite down to a few layer-pair thickness, where the
superlattice is composed of alternating stacks of pseudo-
tetragonal PbS-like layer and pseudo-hexagonal M2S3-like layer.
Although the constituent 2D lattices are isotropic in nature, the
incommensurability between them makes the superlattice struc-
turally anisotropic. First, the anisotropic crystal structure and the
chemical composition of lengenbachite are determined by
transmission electron microscopy (TEM), energy-dispersive X-ray
spectroscopy (EDXS), and X-ray photoelectron spectroscopy (XPS)
analysis. Furthermore, the in-plane structural anisotropy of
lengenbachite flakes is probed by angle-resolved polarized Raman
spectroscopy. By performing polarization-dependent absorption
measurements, we observe the optical anisotropy induced linear
dichroism and a direct band gap of 2 eV in lengenbachite flakes.
Moreover, we investigate the effect of crystal structural anisotropy
on the optical nonlinearity by measuring polarization-dependent
THG in lengenbachite flakes and estimating the third-order
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nonlinear susceptibility. We also show that the anisotropic THG
response can be further utilized for prompt determination of the
lattice orientation, by characterizing the intensity profile of THG
emission from the flake upon the excitation from a radially or
azimuthally polarized vector beam. Finally, as a nonlinear optical
device application, nonlinear optical vortex conversion from the
flake is demonstrated with the polarization-dependent intensity
modulation of TH optical vortices. Our results not only provide a
deeper insight of the origination of structural anisotropy in natural
vdW superlattice lengenbachite, but also offer a better under-
standing of the role of structural anisotropy in linear and nonlinear
light–matter interactions in vdW materials. Furthermore, the
demonstrated results are promising for the expansion of the
current existing 2D material library through identification of new
types of natural vdW heterostructures and can also be harnessed
to realize polarization-sensitive anisotropic photonic and optoe-
lectronic devices for future photonic integrated circuits and
optical information processing.

RESULTS
Morphology and chemical composition of lengenbachite
Lengenbachite is a sulfosalt mineral with the approximate
chemical formula of Pb6(Ag,Cu)2As4S13, which was discovered in
1904 by R. H. Solly and named after its type locality of the
Lengenbach quarry in Valais, Switzerland39–41. It belongs to the
subclass of minerals called misfit compounds that are composed
of stacks of alternating semi-commensurate layers of a four-atom-
thick PbS-like pseudo-tetragonal (Q) layer and a five-atom-thick
M2S3-like pseudo-hexagonal (H) layer. Previous studies on the
mineral indicate that both of these layers contain Pb and As atoms
in cation sites, with stoichiometries for Q-layer being (Pb,As)4S4
and H-layer being (As,Pb)2S3. Figure 1a represents the simplified
crystal structure of lengenbachite, indicating alternative Q-layers
and H-layers bonded together via vdW forces, where the a-axis
[100] is considered to be the out-of-plane stacking direction, while
b-axis [010] and c-axis [001] are considered to be the two in-plane
directions. Also, α, β, and γ are the angles between a-axis,
b-axis and c-axis. Lengenbachite has a triclinic crystal structure
belonging to the P1 space group. The geometric crystallographic
data suggests that the unit cell parameters for the Q-layers and
H-layers are aQ ¼ aH ¼ 18:45Å, bQ ¼ 5:84Å, cQ ¼ 5:85Å,
bH ¼ 3:90Å, cH ¼ 6:38Å, while αQ ¼ αH ¼ βQ ¼ βH ¼ 90�, and
γQ ¼ γH ¼ 91:01�33. These data indicate that the unit cell
parameter of the coincidence cell or a super cell consists of
two-layer-pair repeat along the a-direction with α= 18.45 Å.
In b-direction and c-direction, lattice parameters are semi-
commensurable at b ¼ 2bQ ¼ 3bH ¼ 11:68Å and c ¼ 12cQ ¼
11cH ¼ 70:16Å. Therefore, the supercell is made of 2:3 and
12:11 Q-type and H-type unit cells in b-direction and c-direction.
Figure 1b shows the characteristic appearance of lengenbachite
clusters formed on a big piece of crystalline dolomite rock which is
acquired from Lengenbach quarry, Binn valley, Switzerland. Figure
1c is a zoomed-in view of one such cluster, where several tabular
and blade-like plates (about 3–5mm long) of steel-gray colored
lengenbachite crystals with perfect [100] cleavage are visible to be
contained in a vug in white dolomite. The lengenbachite thin
flakes are mechanically exfoliated using Nitto tape onto a quartz
substrate. Details of the mechanical exfoliation are included in
the Methods section. Figure 1d shows a reflection optical
microscope image of a few exfoliated ultrathin lengenbachite
crystals. The topography of the crystal surface is analyzed using
atomic force microscopy (AFM) in Fig. 1e. From the height profiles
of the flakes in the AFM image (inset of Fig. 1e), the thicknesses of
two flakes are determined to be 28 and 36 nm approximately. The
28 nm thickness indicates that the flake consists of only 15-layer
pairs. Figure 1f shows the reflection microscope image of an

isolated lengenbachite flake on quartz substrate, which is used for
all of our experiments. The associated AFM image in Fig. 1g
confirms that the flake is 44 nm thick.
First, we analyze the crystal structure of mechanically exfoliated

lengenbachite flakes by TEM studies. The exfoliated ultrathin
lengenbachite flakes on quartz substrate are transferred onto a
TEM nickel grid (details of the TEM sample preparation is included
in the Methods section). Figure 1h is the TEM image of a typical
lengenbachite flake where an in-plane striped pattern of periodic
darker and lighter areas is clearly visible, indicating an out-of-plane
rippling modulated to its perpendicular direction on the surface.
Such rippled structures known as interlayer moiré patterns are
formed in vdW heterostructures due to the elastic deformation
caused by the presence of periodic strain in the crystal lattice for
forcing local atomic alignment between the constituent layers.
Here, the pattern is arising to force the commensuration between
the two incommensurate Q-type and H-type lattices. Previously,
similar interlayer moiré patterns have also been observed in other
natural vdW heterostructures of franckeite32–34 and cylindrite37.
The high-resolution (HR) TEM image in Fig. 1i is a zoomed-in
view on the crystal surface showing the atomic arrangements of
the component layers. The fringes occurring from the ripples are
spaced with a period of 3.55 nm which is approximately half of the
lattice constant c = 7.016 nm of the supercell. The selected area
diffraction pattern (SAED) from the crystal, normal to the [100]
crystal zone axis is shown in Fig. 1j. The SAED exhibits the
reflections from the corresponding Q-layers and H-layers, which
are marked in yellow color and red color, respectively. Many weak
superlattice diffraction spots are also visible. The SAED further
indicates that the rippling on the surface is modulated along the
c-direction ([001] zone axis) of the crystal. Therefore, c-direction is
assigned as the rippling direction.
The chemical composition of the exfoliated lengenbachite

flakes is then analyzed by performing EDXS. The averaged EDXS
spectrum in Fig. 2a acquired from a thin flake confirms the
presence of main elements Pb, As, Ag, Cu, and S. Peaks from other
elements such as C, O, and Si are present since the sample is
prepared by exfoliating naturally occurring minerals. However, the
signal of Ni is present due to the nickel TEM grid. The presence of
the underlying carbon film support and the accumulation of
carbon-based adsorbates during the flake transfer on the TEM grid
may also contribute majorly to the detected signal of C, O, and Si.
The compositional stoichiometry of the lengenbachite flake is
deduced by the quantification of each element in the crystal,
which is provided in Table 1. The approximate chemical formula is
determined to be Pb5.9Cu0.73Ag1.44As4.2S13. Although this approx-
imate chemical formula is close to that of the previously
determined chemical formula of lengenbachite, it is not com-
pletely charge-balanced which is mainly caused by the low
sensitivity of EDXS, the heavy overlap between S Kα and Pb Mα

peaks, as well as the overlap between Pb Lα and As Kα peaks. TEM-
EDXS elemental maps in Fig. 2b–f of the main elements Pb, Cu, Ag,
As, and S are acquired from the area of a lengenbachite crystal
shown in the dark-field (DF)-TEM image in the inset of Fig. 2a.
These maps further indicate a homogeneous distribution of all the
elements in the crystal when viewed from the top, along
a-direction of the crystal.
Next, we perform XPS on air-aged lengenbachite flakes to

determine the surface chemical composition and the effect of
oxidation on the surface, due to the limited penetration depth of a
few nanometers in XPS. Figure 2g is the averaged XPS spectrum of
air-aged lengenbachite. The quantification of the main elements is
listed in Table 2. The approximate surface chemical formula of
lengenbachite deduced from the compositional stoichiometry
analysis is Pb6Cu0:8Ag1:3As4:3S13. The observed C 1s peak in the
XPS spectrum suggests the presence of carbon adsorbates on
the crystal surface. However, it may also be occurring due to the
underlying carbon tape. The presence of a faint O 1s peak may be
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attributed to very weak oxidation at the surface of the flake but
oxygen may also be present inside the carbon adsorbates. In
addition, the oxidation states of individual elements are deter-
mined by the peak fitting in the high-resolution spectra at Pb 4f,
Cu 2p, Ag 3d, As 3d and S 2p binding energy regions, as presented
in Fig. 2h–l. The spectra in Fig. 2h indicate that lead is present in
the material in Pb2+ (91%) and Pb4+ (9%) oxidation states, while
the spectrum in Fig. 2k shows that arsenic is present as As3+ (61%)
and As5+ (39%). Copper (Fig. 2i), silver (Fig. 2j), and sulfur (Fig. 2l)
are exclusively present as Cu+, Ag+, and S2−, respectively. The
slight over representation of As in the derived formula may be
attributed to the small deformation of the crystal surface during
the sheer-assisted mechanical exfoliation process.

Anisotropic Raman scattering from lengenbachite flakes
Figure 3a shows the Raman spectrum collected from the 44 nm-
thick lengenbachite flake in Fig. 1f, which is excited by a 632.8 nm
He–Ne laser. The details of the experimental setup are included in
the Methods section. The Raman spectrum of lengenbachite
shows a series of distinguished Raman modes within the
70–500 cm−1 frequency range, which are located at 77, 101, 134,

158, 182, 208, 221, 245, 319, 340, 355, 370, 432, and 492 cm−1.
The oxidation states of the individual elements in lengenbachite
determined from the XPS measurements suggest that the
molecular bonds between the cationic and anionic elements in
lengenbachite should be analogous to those present in the
crystals of its constituent components such as PbS, As2S3, As4S4,
Ag2S, and CuS. Therefore, the Raman modes of lengenbachite can
be assigned according to the Raman spectra of the constituent
components, including orpiment As2S342–44, realgar As4S445,46,
galena PbS47, acanthite Ag2S48–50, and covellite CuS51,52. The
77 cm−1 peak is assigned as the Raman modes of As2S3 (69 cm−1)
and CuS (65 cm−1). The peak at 101 cm−1 is attributed to the silver
lattice vibrational mode of Ag2S (93 cm−1). The 134 cm−1 peak
corresponds to both the Ag mode of As2S3 (136 cm−1) and the
mode of CuS (142 cm−1). The 158 cm−1 peak represents a
combination of the Ag mode of As2S3 (154 cm−1), the transverse
acoustic and optical phonon modes of PbS lattices (154 cm−1),
and the silver lattice vibrational mode of Ag2S (147 cm−1). The
peak at 182 cm−1 corresponds to the combination of the Raman
modes of As4S4 (183 cm−1) and As2S3 (179 cm−1) as well as the
Ag-S stretching mode of Ag2S (188 cm−1). The 208 cm−1 peak is
attributed to a combination of the Ag mode of As2S3 (203 cm−1)

Fig. 1 Morphology, crystal structure, and mechanical exfoliation of lengenbachite. a Schematic diagram of lengenbachite crystal structure
composed of alternating PbS-like pseudo-tetragonal layer (Q-layer) and M2S3-like pseudo-hexagonal layer (H-layer). b Optical image of the
mineral rock where clusters of bulk lengenbachite crystals are formed on dolomite. Scale bar is 20mm. c Zoomed-in view of one such cluster,
where several tabular and blade-like crystal plates (about 3–5mm long) with steel-gray color are contained in a vug in white dolomite. Field of
view is 10mm wide. d Reflection microscope image of mechanically exfoliated lengenbachite crystals on quartz. e AFM image of the
same flakes where the line profiles in the inset show that the two crystals are 28 and 36 nm thick. f Reflection image of an isolated
lengenbachite flake. g AFM image showing that the flake thickness is 44 nm. Scale bars are 2 µm. h TEM image of a lengenbachite flake
displaying the characteristic striped patterns along the c-axis, caused by the out-of-plane rippling due to the forced commensuration of
Q-layers and H-layers. Scale bar is 40 nm. i HRTEM image illustrating the atomic arrangements. Scale bar is 5 nm. j Corresponding SAED pattern
consisting with diffraction spots associated with Q-layer (yellow) and H-layer (red). Scale bar is 1 nm−1.
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Fig. 2 Chemical composition characterization of lengenbachite crystal. a Averaged EDXS spectrum from a lengenbachite thin flake. The
peaks of main elements Pb, Cu, Ag, As, and S labeled in red color are used for the quantification in Table 1. b–f TEM-EDXS maps of main
elements Pb, Cu, Ag, As, and S acquired from the crystal area marked in the DF-TEM image in the inset of a. Scale bar is 50 nm. g Averaged XPS
spectrum of lengenbachite from multiple measurements. The peaks labeled in red color are used for the quantification in Table 2. h–l High-
resolution XPS spectra in the binding energy regions of Pb 4f, Cu 2p, Ag 3d, As 3d, and S 2p, respectively.

Table 1. Compositional stoichiometry of lengenbachite from EDXS
quantification.

Element Average concentration (at%)

Pb 23.28 ± 1.04

Cu 2.89 ± 0.31

Ag 6.05 ± 0.53

As 16.72 ± 0.78

S 51.38 ± 1.44

Table 2. Compositional stoichiometry of lengenbachite from XPS
quantification.

Element Average concentration (at%)

Pb 23.81 ± 1.41

Cu 3.22 ± 0.63

Ag 4.91 ± 0.94

As 16.84 ± 0.79

S 51.22 ± 2.15
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and the longitudinal optical phonon modes of PbS lattices
(204 cm−1). The 221 cm−1 peak is assigned as the Raman mode
of As4S4 (221 cm−1). The peak at 245 cm−1 belongs to the Ag-S
stretching mode of Ag2S (243 cm−1). The 319 cm−1 peak
corresponds to the Ag mode of As2S3 (311 cm−1). The 340 cm−1

peak is attributed to the mode of As4S4 (342 cm−1). The peak at
355 cm−1 represents the combined Raman modes of As2S3 (355,
359 cm−1) and As4S4 (354 cm−1). The peak at 370 cm−1 is assigned
as the Raman modes from As4S4 (369, 375 cm−1). The 432 cm−1

peak belongs to the S-S stretching mode of Ag2S (430 cm−1).
Finally, the 492 cm−1 peak is related to the S–S stretching mode of
CuS (475 cm−1).
The in-plane structural anisotropy of triclinic lengenbachite

crystal can be simply revealed by angle-resolved polarized Raman
spectroscopy. Previously the method has been used for determin-
ing the crystal axes of other naturally occurring vdW hetero-
structures such as franckeite and cylindrite. Therefore, we perform
polarization-resolved Raman measurements for the parallel and
perpendicular polarization components of the scattered light
from the 44 nm-thick lengenbachite crystal. In Fig. 3b, c, we plot
the evolution of parallel and perpendicular components of the

Raman spectra with the linear polarization angle of incident light,
where 0° indicates the linear polarization along x-axis as indicated
in the inset of Fig. 1f. It is obvious that the intensities of the Raman
modes vary periodically depending on the excitation polarization
angle, and no identifiable shifts are observed. According to the
classical Raman selection rule, Raman intensity can be expressed
as I / ei � R � esj j with ei and es being the unit polarization
vectors of the incident and scattered light, while R is the Raman
tensor of each Raman mode. Under parallel configuration
ei ¼ es ¼ cos θ sin θ 0½ �, and under perpendicular configura-
tion es ¼ � sin θ cos θ 0½ �. For triclinic lengenbachite crystal,
the Raman tensor of the Ag Raman modes can be expressed as,

R ¼
a d e

d b f

e f c

2
64

3
75; (1)

where a, b, c, d, e, and f are the complex elements of the Raman
tensor. Therefore, the Raman intensity of the Ag modes under

Fig. 3 Structural anisotropy of lengenbachite crystal revealed by Raman spectroscopy. a Representative Raman spectrum acquired from
the 44 nm lengenbachite flake, where all the observed Raman modes are labeled. b, c Contour plots of the angle-resolved polarized Raman
spectra obtained in parallel and perpendicular polarization configurations. d Polar plots of the Raman intensities of parallel components for
Raman modes at 134, 158, 182, 208, 245, 319, 355, 432, and 490 cm−1. The black points are the measured data and the red solid curves are the
theoretical fits. e Corresponding polar plots of the Raman intensities of perpendicular components of the same Raman modes.
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parallel and perpendicular configurations can be written as,

Ijj θð Þ / aj j2cos4θþ bj j2sin4θþ 4 dj j2þ2 aj j bj jcosϕab

� �
sin2θcos2θ

þ4 aj j dj jcosϕadsinθcos
3θþ 4 bj j dj jcosϕbdsin

3θcosθ
;

(2)

and

I? θð Þ / dj j2cos22θþ 1
4 aj j2þ bj j2�2 aj j bj jcosϕab

� �
sin22θ

þ 1
2 bj j dj jcosϕbd � aj j dj jcosϕadð Þsin4θ ; (3)

where ϕab, ϕad, ϕbd represent the phase differences between a
and b, a and d, b and d, respectively. The polar plots of parallel and
perpendicular components of each Raman mode are plotted in
Fig. 3d, e. The experimental data (black points) match well with
the theoretical fits (red curves) with Eqs. (2) and (3). It is noted that
the parallel components of the Raman peaks at 134, 245, 355, 432,
and 490 cm−1 show an anisotropic two-fold symmetric pattern
with a maximum at 0° and a secondary maximum at 90°. On the
other hand, the Raman peaks at 158, 182, 208, and 319 cm−1

exhibit a similar anisotropic pattern but with a maximum at 90°
and a secondary maximum at 0°. The polarization-resolved Raman
scattering have been used to identify the crystal axes of
anisotropic crystals, where the Raman intensity of parallel
polarization component of the Ag mode reaches a maximum or
a secondary maximum value as the excitation linear polarization is
oriented along any of the crystal axes. In order to validate these
results and unambiguously determine the crystal axis, we also
perform both polarization-resolved Raman scattering and TEM
characterizations on one thin flake of lengenbachite transferred
onto a nickel TEM grid. The experimental results are included in
Supplementary Fig. 1 to show the one-to-one correspondence
between the polar plots of anisotropic Raman modes and the
rippling direction of the crystal. It is evident that the Raman modes
at 245 and 355 cm−1 reach the maximum intensities along the
rippling direction (c-axis) of the lengenbachite crystal, whereas
the Raman modes at 208 and 319 cm−1 exhibit the secondary
maximum intensities along the rippling direction. By comparing
the anisotropic Raman modes of this flake with those of the 44 nm
lengenbachite crystal shown in Fig. 3d, we infer that the rippling
direction (c-axis) of the 44 nm crystal displayed in Fig. 1f is
aligned along 0° (x-axis). The perpendicular components of most
Raman peaks show an anisotropic four-lobe polar pattern, where

the intensities reach a minimum value when the excitation
linear polarization is along any of the crystal axes in 0° (x-axis) or
90° (y-axis).

Polarization-dependent absorption and linear dichroism
Next, we explore the evolution of the absorbance of lengenba-
chite crystals as a function of film thickness by monitoring the
optical absorption spectra from thin flakes of three different
thicknesses of 44, 100, and 300 nm within the wavelength (λ)
range of 420–800 nm. Description of the experimental setup is
included in the Methods section. Figure 4a, b plot the measured
reflection (R) and transmission (T) spectra. The reflectance of the
44 nm flake remains flat within the wavelength range 420–650 nm
and then decreases gradually, whereas the reflectance of the
100 nm flake gradually increases within 420–650 nm and remains
flat afterwards. This justifies the yellowish and reddish-yellow glow
of the 44 and 100 nm flakes in the reflection image. On the other
hand, the 300 nm flake shows an interesting trend with a
reflection dip around 660 nm, and therefore exhibits a greenish
color under reflection microscope. The transmittance of the 44
and 100 nm flakes shows a similar trend with gradually increasing
value within the wavelength range 420–800 nm range, while the
300 nm flake exhibits a very low transmission in 420–600 nm and a
transmission peak around 680 nm. These trends justify the
reddish-black color of the crystals in the transmission images.
The absorption (A = 1 – R – T) spectra from the flakes of different
thicknesses are plotted in Fig. 4c, showing a thicker crystal has a
higher absorbance as expected. For the 44 and 100 nm crystals, an
absorption peak is observed around 460 nm, whereas for the
300 nm crystal, this peak is shifted to 500 nm. The opposite
oscillations in the reflection and transmission spectra around the
wavelength of 660 nm is attributed to the thin film interference of
light inside the 300 nm flake. However, these are almost canceled
out in the absorption spectra.
The rippling caused from the periodic lattice strain can further

result in anisotropic optical properties. Therefore, polarization-
dependent absorption spectroscopy is performed to study the
linear dichroism response of lengenbachite. Figure 4d shows a
series of absorption spectra acquired from the 44 nm-thick flake as
a function of the rotation angle of the linear polarizer. It is
observed that the absorbance varies periodically with the linear
polarization angle, exhibiting a maximum absorbance when the

Fig. 4 Linear optical absorption of lengenbachite flake. a–c Reflectance, transmittance, and absorbance spectra of lengenbachite flakes of
three different thicknesses 44, 100, and 300 nm. d Absorbance spectra from the 44 nm-thick lengenbachite flake as a function of the incident
linear polarization angle between 0° and 180°. e, f Evolution of the absorbance as a function of the linear polarization angle at two different
wavelengths of 460 and 520 nm. g Tauc plots for the direct optical band gap extraction of three lengenbachite flakes.
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incident polarization is along 0° (x-axis) and a minimum along 90°
(y-axis). Figure 4e and f are the polar plots of the evolution of
absorbance as a function of the linear polarization angle at two
different wavelengths of 460 and 520 nm for the 44 nm-thick
flake. The experimental data is fitted with a periodic function of
A θð Þ ¼ Axcos2θþ Aysin2θ, where Ax and Ay are the absorbance
values for incident linear polarization along x-axis and y-axis. It has
been reported that for franckeite the highest absorbance is
obtained as the incident polarization is along the rippling
direction (c-axis) of the crystal34. Therefore, we identify x-axis as
the c-direction and y-axis as the b-direction for the lengenbachite
crystal. Another important inference drawn from Fig. 4e, f is that
lengenbachite exhibits strong linear dichroism with the ratio
Ax/Ay = 1.13 and 1.14 at λ = 460 nm and 520 nm, even though the
constituent Q-layers and H-layers are isotropic. Linear dichroism is
also observed in the 100 and 300 nm-thick flakes, where the
obtained ratio at the wavelength of 460 nm is Ax/Ay = 1.20 and
1.18, respectively. The measured polarization-dependent absor-
bance spectra and the polar plots of the evolution of absorbance
at the wavelength of 460 nm for the 100 and 300 nm flakes are
included in Supplementary Fig. 2. Furthermore, the moiré patterns
formed by the periodic in-plane strain in the vdW superlattice
could also strongly modulate the electronic band structure and
the band gap of the material. For the 44 nm-thick flake, we
observe a 30 meV modulation in the direct allowed optical
transition depending upon the linear polarization angle of the
incident light (see Supplementary Fig. 3), showing the direct
optical band gap varies from 1.96 to 1.99 eV as the linear
polarization angle is rotated from the rippling direction (c-axis) of
the flake to its perpendicular direction (b-axis). For lengenbachite
crystal, the observed band structure anisotropy is not very strong
because the strain-induced modulation of the electronic band
structure happens along both the principal axes of the crystal. The
optical band gap Eg of the lengenbachite flakes are achieved by
the Tauc plot based on the relation of αhνð Þn¼ mðhν � EgÞ, where
α is the absorption coefficient corresponding to the photon
energy hν (h is the Plank’s constant) with ν being the frequency of
the incident photon and m is a constant. The value of n=
2 signifies an allowed direct transition, while n= 1/2 or n= 2/3
represents an allowed indirect or forbidden transition. The value
of α can be extracted from the measured R and T plots from
Fig. 4a, b with the flake thickness d as53,

α ¼ 1
d
ln

2T

T2 � 1� Rð Þ2
h i

þ T2 � 1� Rð Þ2
h i2

þ 4T2

� �1=2

8>>><
>>>:

9>>>=
>>>;

(4)

Figure 4g plots the (ahv)2 as a function of the photon energy
(hv) for the three flakes. A good linear fit in the Tauc plots is
obtained for all the cases, which signifies an allowed direct
transition and hence the presence of direct band gap. The
extracted direct optical band gap from the Tauc plots for 44, 100,
and 300 nm-thick lengenbachite flakes are estimated to be 1.96,
2.03, and 1.98 eV respectively. It is noteworthy that the band gap
2 eV of lengenbachite tends to lie between the band gaps of its
component binary sulfides of As2S3 at 2.37 eV and PbS at 0.37 eV,
which is consistent with the previous studies in the optical band
gaps for ternary and quaternary sulfide minerals48. In Supplemen-
tary Fig. 4, we further confirm the presence of the direct optical
band gap in the lengenbachite crystals by measuring the
photoluminescence spectra from all the three flakes with a
405 nm excitation laser. We observe a photoluminescence peak
around the wavelength of 616 nm for each flake, which is
consistent with the energy of the measured direct band gap of
2 eV estimated from the Tauc plot.

Anisotropic THG in lengenbachite crystals
To investigate the effect of structural anisotropy on anisotropic
nonlinear optical properties, we explore the polarization-
dependent THG from lengenbachite thin flakes. Details of the
experimental setup are provided in the Methods section. Figure 5a
shows the transmission optical microscope image of THG emission
from the area of the 44 nm-thick flake of Fig. 1f, when it is
illuminated with a 1560 nm wavelength pump laser of spot size
1.5 µm. The recorded THG spectrum in Fig. 5b shows that the peak
at 520 nm is exactly one-third of the excitation wavelength. The
cubic power-law dependence in the log-scale plot of the average
THG power as a function of the average pump power in Fig. 5c
further confirms the THG process. For the average pump power of
2 mW corresponding to a peak pump irradiance of 13.6 GW cm−2,
the achieved THG conversion efficiency is around 1.1 × 10−8 for
the 44 nm-thick flake. When the crystal axes c, b, and a are
oriented along x, y, and z-directions, the contracted form of the
third-order nonlinear susceptibility tensor (χ(3)) for the triclinic
crystal system of lengenbachite is expressed as54,

χ 3ð Þ ¼
χ11 χ12 χ13
χ21 χ22 χ23
χ31 χ32 χ33

χ14 χ15 χ16
χ24 χ25 χ26
χ34 χ35 χ36

χ17 χ18 χ19
χ27 χ28 χ29
χ37 χ38 χ39

χ10
χ20
χ30

2
64

3
75;
(5)

where the first subscript 1, 2, 3 represents x, y, z respectively, and
the second subscript refers the following combination of three
components as,

xxx yyy zzz

1 2 3

yzz yyz xzz

4 5 6

xxz xyy xxy

7 8 9

xyz

0

We consider the fundamental beam has the linearly polarized
electric field along an angle θ to the x-axis at frequency ω as
~E

ωð Þ ¼ E0 cos θx̂ þ sin θŷð Þ, where x̂ and ŷ are the unit vectors
along x-axis and y-axis. Note that the polarization of the excitation
electric field always remains in the x–y plane, there is no
contribution from the χ(3) components containing z terms in the
THG emission. Hence, only eight non-zero elements of χ(3) as χ11,
χ12, χ18, χ19, χ21, χ22, χ28, and χ29 will be contributing to the THG
signal and the x-polarized and y-polarized components of the THG
intensity can be expressed as,

I 3ωð Þ
x / χ11cos

3θþ χ12sin
3θþ 3χ18 cos θsin

2θþ 3χ19 sin θcos
2θ

� �2
I 3ωð Þ
y / χ21cos

3θþ χ22sin
3θþ 3χ28 cos θsin

2θþ 3χ29 sin θcos
2θ

� �2
(6)

Figure 5d plots the dependence of the THG emission power
from the 44 nm-thick lengenbachite crystal as function of incident
linear polarization angle with respect to x-axis for fundamental
beam power at 1.1 mW. The desired linear polarization of the
pump beam is obtained by placing a linear polarizer oriented
along x-axis (c-axis of the crystal) and a rotating half-wave plate.
The black, red and blue data points represent the measured
x-component, y-component and total THG power, while the solid
curves are theoretical fits using Eq. (6), which agree well with the
experimental data. It is clear that the polarization-dependent THG
emission from the lengenbachite crystal displays an anisotropic
two-fold symmetric pattern, with the maximum THG power at 0°
as the incident linear polarization is parallel to the rippling
direction along the c-axis and the second maximum at 90°, which
is perpendicular to the ripples along the b-axis. We further confirm
this result by measuring the polarization-dependent THG emission
from the thin flake on nickel TEM grid, which is characterized in
Supplementary Fig. 1. According to the measured data in
Supplementary Fig. 5, it is shown that the maximum THG power
occurs as the incident polarization is orientated along the rippling
direction (c-axis), which is determined directly by TEM imaging.
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Similar trend is also observed in lengenbachite flakes of other
thicknesses, including the 28 and 100 nm flakes as shown in
Fig. 5e, f. Figure 5g plots the THG anisotropy ratio
Ið3ωÞx θ ¼ 0�ð Þ=Ið3ωÞy θ ¼ 90�ð Þ between the incident linear polariza-
tions parallel and perpendicular to the rippling direction as a
function of the flake thickness. The anisotropy ratio almost
maintains a constant value of 1.90 ± 0.05 for the thickness range
between 28 and 156 nm. The structural anisotropy of lengenba-
chite crystal also gets unveiled in the anisotropic χ(3) tensor
elements extracted from Eq. (6), with the average relative
magnitudes for lengenbachite flakes of different thicknesses as
χ11:χ12:χ18:χ19:χ21:χ22:χ28:χ29 = 1:0.03:0.13:0.02:0.01:0.72:0.02:0.11.
Furthermore, the dependence of THG emission on the

lengenbachite flake thickness is investigated. Figure 5h plots the
evolution of the measured average THG power (P(3ω)) as a function
of the flake thickness (d) at the pump power of P(ω)= 1.1 mW. The
black data points are the measured THG power from 12 different
flakes of thicknesses ranging in 28–156 nm, when the incident
linear polarization is parallel to the rippling direction (c-axis) of
each flake. It is observed that the THG power increases
quadratically up to around 4.63 pW as the flake thickness is
increased to 85 nm, giving the maximum conversion efficiency of
4.21 × 10−9. However, the THG power exhibits an exponential
decay for the thickness larger than 85 nm, where the significant
attenuation of THG power is attributed to the strong absorption
through thick lengenbachite flakes. Thereby, the measured

thickness-dependent THG response can be fitted with an

exponentially decaying function P 3ωð Þ dð Þ ¼ Cd2 exp � 4πk3d
λ3

� �
with

C as a constant and k3 being the imaginary part of refractive index
at λ3= 520 nm, where the fitting (red curve) shows k3 = 1.02.
Additionally, χ(3) value of lengenbachite crystal can be estimated
by using the following relationship11,

χð3Þ
�� ��2¼ 16

ffiffiffiffiffiffiffiffiffiffi
n23þk23

p
n31ϵ

2
0c

4f 2repW
4τ2 π

4 ln 2½ �3P 3ωð Þ

9ω2d2PðωÞ3

4π2k2
3
d2

λ2
3

e
�4πk3d

λ3 �2e
�2πk3d

λ3 þ1

0
@

1
Ae 4πk3d

λ3
;

(7)

where n1 and n3 are the real part of the refractive index at
fundamental frequency (ω) and THG frequency (3ω), and the other
terms are the parameters of the Gaussian fundamental pulsed
laser including beam spot size W= 1.5 µm, pulse width τ= 90 fs,
and repetition rate frep= 80 MHz. It is noted that the refractive
index information of lengenbachite crystal is still unknown, but
the refractive indices of its main constituent layers of PbS and
As2S3 are available, with n1 = 4.24 and n3 = 4.34 for PbS, n1 = 2.44
and n3 = 2.73 for As2S355. By assuming an averaged refractive
index of n1 = n3 = 3.5 for lengenbachite crystal, the estimated χ(3)

value is 2.18 × 10−19 m2 V−2. Also as the refractive index varies
from 2.5 to 4.5, the χ(3) value stays between 1.13 × 10−19 and
3.56 × 10−19 m2 V−2. Nonetheless, the χ(3) of lengenbachite crystal
is of the same order as the widely studied anisotropic 2D material

Fig. 5 Anisotropic THG in lengenbachite crystals. a Transmission microscope image of THG emission from the 44 nm-thick lengenbachite
flake. Scale bar is 2 µm. b Measured THG emission spectrum from the flake. c Double log-scale plot of the measured THG power as a function
of the pump power. d Angular dependence of the THG power on incident linear polarization angle of the pump beam for the 44 nm-thick
flake. e, f Polar pts of the polarization-dependent THG response for two other flakes of thicknesses 28 and 100 nm. gMeasured THG anisotropy
ratio as a function of the flake thickness. h Evolution of the average THG power versus the flake thickness for incident linear polarization along
the rippling direction.

A. Dasgupta et al.

8

npj 2D Materials and Applications (2021)    88 Published in partnership with FCT NOVA with the support of E-MRS



of BP. For further assessment of the THG response, in Table 3 the
measured THG anisotropy ratio and χ(3) value of lengenbachite
crystal are compared with the reported values of other anisotropic
nonlinear 2D materials such as franckeite, cylindrite, BP, ReS2,
GeSe, GeAs, and SiP.

Prompt determination of crystal axes with vector beams
Radially or azimuthally polarized doughnut-shaped vector beams
carry all the linear polarization components equally distributed in
its spatial intensity profile. Since the THG response from
lengenbachite flakes is directly related to the in-plane structural
anisotropy of the crystal, one can directly probe the crystal-
lographic information by imaging the THG intensity profile upon
the excitation with a radially or azimuthally polarized vector beam.
Figure 6a is the THG image from the 44 nm-thick lengenbachite

flake in Fig. 1f when it is excited with a doughnut-shaped radially
polarized vector beam. The rippling direction of the same flake
has already determined to be along x-axis from the Raman and
THG characterization. Figure 6b shows the same THG image when
the background white light is turned off. It is evident that the THG
emission has two unequal maxima along the x-direction and y-
direction, indicating the anisotropic χ(3) tensor elements of the
crystal. The more intense maxima along the x-direction occur due
to the fact that the polarization of the pump vector beam is
oriented along the x-axis corresponding to the crystal’s rippling
direction (c-axis) at these positions, where the largest χ11 element
in χ(3) tensor dominates. While the secondary maxima along
the y-direction are observed as the pump vector beam at these
locations is polarized perpendicular to the crystal’s rippling
direction (b-axis), where the χ22 element in χ(3) tensor is present.
Figure 6c plots the THG intensity profile as a function of the

Table 3. Comparison of THG response in lengenbachite with other anisotropic nonlinear 2D materials.

Material Crystal system Space group
(bulk)

Thickness (nm) Fundamental
wavelength (nm)

χ(3) × 10−19 (m2 V−2) χ
3ð Þ
11 =χ

3ð Þ
22 ratio Ref.

Lengenbachite Triclinic P1 28–85 1560 2.18 ~1.39 This work

Franckeite Triclinic P1 20–100 1560 1.87 ~1.23 36

Cylindrite Triclinic P1 10–80 1560 3.06 ~1.51 38

BP Orthorhombic Cmca 5–20 1557 1.4 ~1.8 11

ReS2 Triclinic P1 0.73–10 1515 35 ~1.2 9

GeSe Orthorhombic Pnma 10–100 1560 3.9 1.7–2.1 10

GeAs Monoclinic C2/m 10–60 1560 3.5 2–2.4 13

SiP Orthorhombic Cmc21 10–40 1560 1.8 ~1.38 56

Fig. 6 Rapid determination of the rippling direction of lengenbachite crystal with vector beams. a Recorded THG image of the 44 nm-thick
lengenbachite flake excited with a radially polarized vector beam. b Same THG image with the background light turned off. c Corresponding
THG intensity profile as a function of the azimuthal angle. Measured data (black data points) are fitted with theoretical profile (red solid
curves). d, e Measured THG image of the flake excited with an azimuthally polarized vector beam. f Corresponding THG intensity profile.
Scale bars are 2 µm.

A. Dasgupta et al.

9

Published in partnership with FCT NOVA with the support of E-MRS npj 2D Materials and Applications (2021)    88 



azimuthal angle. The extracted intensity profile (black data points)
is fitted (red curve) with Eq. (6). Figure 6d, e further show the THG
images from the crystal when it is pumped with an azimuthally
polarized vector beam. Opposite to the previous case, here the
more intense maxima in the THG emission are observed along
the y-direction while the secondary maxima are in the x-direction.
The corresponding THG intensity profile depending on the
azimuthal angle is plotted in Fig. 6f. Therefore, imaging the THG
emission from the lengenbachite crystal upon the excitation with
a doughnut-shaped radially or azimuthally polarized vector beam
is useful for rapid characterization of the crystal axes and in-plane
structural anisotropy, which can be further extended for other
anisotropic vdW materials. In contrast to polarization-dependent
Raman scattering, angle-resolved photocurrent measurement,
and angle-resolved THG experiment, where the crystallographic
characterization requires multiple measurements, the current
technique directly provides the crystallographic information with
only one single THG image collection.

Third-harmonic optical vortex conversion
As a potential nanoscale device application, we demonstrate TH
optical orbital angular momentum (OAM) conversion by exciting
the lengenbachite flake with a fundament vortex beam. An optical
vortex beam possesses a helical phase structure of exp(ilϕ) and

thus carries the OAM of lℏ per photon and exhibit the doughnut-
shaped intensity profile, where l is the topological charge (TC) and
ϕ is the azimuthal angle around the phase singularity. The
unbounded dimension of TC of light has made it one of the most
vital parameters to store, control and transport information in
optical communication. Therefore, optical vortex beams have
been harnessed for various applications such as large-scale optical
data transmission57, high-dimensional quantum information
processing58, quantum memory59, and nanoscale optical tweezers.
In the context of our work, the lengenbachite thin flakes provide a
platform to realize nonlinear vortex conversion devices, where the
TC tripling in THG process is demonstrated. The electric field
profile of the fundamental vortex beam with TC= l1 at frequency

ω can be expressed as, Efund ¼ E1exp � r2

w2
1
þ il1ϕ

� �h i
r
ffiffi
2

p
w1

� �l1
, where

r is the distance from the beam center, and w1 is the radius for
which the Gaussian term falls to 1/e of its on-axis value. Now that
the electric field of the TH vortex beam at frequency 3ω is given

by ETHG ¼ E31exp � r2

w2
3
þ il3ϕ

� �h i
r
ffiffi
2

p
w1

� �l3
, with a tripled TC l3= 3l1

and w3 reduced by a factor of
ffiffiffi
3

p
from w1. Figure 7a is the

recorded transmission image of the doughnut-shaped intensity
pattern for the fundamental vortex beam with TC = 1. Details of
the experimental setup for generation of the vortex beam are

Fig. 7 TH vortex conversion from lengenbachite flakes. a EMCCD image of the incident fundamental vortex beam with TC = 1 focused on
the 44 nm-thick lengenbachite flake. b Cylindrical lens image of the fundamental vortex beam confirming TC to be 1. c CCD image of the
converted TH vortex beam from the flake. d Cylindrical lens image of the TH vortex beam indicating TC to be 3. eMeasured line profiles of the
intensity of fundamental and TH vortex beams with TC of 1 and 3 (data points), which are fitted by the calculated profiles of E2fund and E2THG
(solid curves). f Dependence of the TH vortex beam power on the linear polarization angle of the fundamental vortex beam. g THG images of
the converted vortex beams from the flake for different incident linear polarizations at 0°, 45°, 90°, 135°, and 180°. Scale bars are 2 µm.
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included in the Methods section. The associated TC of the
fundamental vortex beam is confirmed by performing an
astigmatic transformation of the recorded image using a
cylindrical lens placed before the CCD camera where the high-
TC optical vortex splits into its constituent elementary vortices
with TC = 1 to form an tilted dark-striped pattern near the focal
plane of the cylindrical lens. The number of dark stripes in the
converted image indicates the TC of the vortex beam. Figure 7b
confirms that the fundamental beam has TC = 1. Figure 7c is the
recorded image of the converted TH vortex beam from the
lengenbachite nanoflake. The corresponding cylindrical lens
image in Fig. 7d is a confirmation that the TH vortex beam has
TC = 3. The measured line profiles of the intensity of the
fundamental (Ifund) and TH (ITHG) vortex beams are plotted in Fig.
7e, where the experimental data points are fitted by the calculated
profiles of E2fund and E2THG (solid curves). It shows that the measured
w3
w1

ratio is 0.58, which is close to the expected value of 1=
ffiffiffi
3

p
.

Further, we explore the effect of the in-plane structural anisotropy
of the crystal on the intensity of the converted TH vortex beam by
performing the polarization-resolved THG study upon excitation
with the fundamental vortex beam. The intensity variation of the
TH vortex beam as a function of the linear polarization angle of
the fundamental vortex beam is plotted in Fig. 7f, which shows a
similar polarization dependence to that of the anisotropic THG
response in the case of fundamental Gaussian beam excitation in
Fig. 5d. It proves that the nonlinear optical anisotropy of
lengenbachite crystal remains intact under the excitation from a
fundamental optical vortex beam. Figure 7g displays the THG
images of the converted vortex beams for different fundamental
beam polarization angles at 0°, 45°, 90°, 135°, and 180°, showing a
clear intensity modulation depending on the incident polarization
angle. Therefore, in-plane structural anisotropy in lengenbachite
flakes can be exploited for polarization-multiplexing nonlinear
vortex generation and OAM conversion in photonic integrated
circuits and optical communication.

DISCUSSION
In summary, we have introduced lengenbachite as a new type of
naturally occurring vdW heterostructure composed of alternating
stacks of PbS-type and M2S3-type isotropic layers. It is demon-
strated that lengenbachite can be mechanically exfoliated down
to 15 layer-pair thickness. With further study and the use of other
exfoliation methods such as liquid-phase exfoliation, it may be
possible to exfoliate lengenbachite down to single unit cell
thickness. From the TEM analysis of ultrathin lengenbachite flakes,
we have observed the interlayer moiré patterns as the small out-
of-plane rippling in the crystal surface and thus a strong in-plane
structural anisotropy of the crystal, which is caused by the vdW
interaction and lattice deformation between the alternately
stacked constituent layers. The chemical composition of bulk
lengenbachite crystals and their surface chemical stoichiometry
further prove the presence of the constituent PbS-like and M2S3-
like layers containing the elements Pb, Cu, Ag, As, and S. Optical
probing of the in-plane structural anisotropy and the rippling
direction of ultrathin lengenbachite flakes is demonstrated
through angle-resolved polarized Raman spectroscopy. These
results provide further insight for understanding the origin of
structural anisotropy in lengenbachite crystal and other naturally
occurring vdW heterostructures, where the initial in-plane lattice
symmetry of the individual constituent layer is broken. The effect
of the structural anisotropy on the linear and nonlinear optical
properties of the lengenbachite crystal is further demonstrated.
The lengenbachite flakes are found to exhibit strong linear
dichroism through polarization-dependent absorption spectro-
scopy, which may be harnessed for designing polarization-
sensitive photodetectors and modulators. A direct optical band

gap is also observed around 2 eV with the Tauc plot analysis.
Furthermore, anisotropic THG response from lengenbachite thin
flakes are investigated to show that the THG power as the linearly
polarized pump beam is along the rippling direction of the crystal
(c-axis) is around twice of that along the perpendicular direction
(b-axis). The anisotropic χ(3) tensor elements are extracted and the
χ(3) value of lengenbachite crystal is estimated to be 2.18 × 10−19

m2 V−2, indicating that lengenbachite exhibits a strong nonlinear
optical response as other anisotropic nonlinear 2D materials. In
addition, it is demonstrated that the lattice orientation of
lengenbachite flake can be promptly identified by characterizing
the THG image from the flake upon the excitation with a radially
or azimuthally polarized vector beam. The air-stable nature and
strong anisotropic χ(3) tensor of ultrathin lengenbachite flakes
make them to be a promising platform for realizing future on-chip
anisotropic nonlinear optical devices for optical information
processing. As one potential application, here we have demon-
strated the nonlinear OAM conversion of optical vortices from
lengenbachite thin flakes, where the TC of the converted TH
vortex beam gets tripled from that of the fundamental vortex
beam. The nonlinear optical anisotropy in lengenbachite allows
the intensity modulation of the converted TH vortex by changing
the polarization of the fundamental vortex beam. These results
may be useful for harnessing natural vdW heterostructure-based
nonlinear optical devices for frequency, polarization, and OAM
multiplexing, data decoding and encoding in optical information
processing and optical communication. Further study of aniso-
tropic electrical and magnetic properties of lengenbachite thin
flakes will also be useful for establishing this new type of vdW
heterostructure for exploring other on-chip device applications.

METHODS
Sample preparation
The quartz substrate is sonicated in deionized water, acetone, and
isopropanol one after the other. The lengenbachite thin flakes are
mechanically exfoliated from the bulk natural lengenbachite mineral
acquired from Lengenbach quarry, Binn valley, Valais, Switzerland using
Nitto tape (SPV 224). Then the flakes are transferred directly onto the
quartz substrate by placing the tape containing the flakes in contact to the
quartz surface and peeling it off fast. For preparing the TEM sample,
exfoliated lengenbachite flakes are transferred from the quartz substrate to
TEM nickel grids following polymethyl methacrylate (PMMA)-assisted wet
transfer method. First the quartz substrate containing the thin flakes is
spin-coated (2000 rpm, 60 s) with PMMA (950 kDa) and baked at 120 °C for
2 min to facilitate the adhesion between lengenbachite and PMMA. Next,
the sample is immersed in 3 M potassium chloride (KOH) solution and kept
at 50 °C for 1.5–2 h. After quartz etching by KOH, the PMMA film containing
the lengenbachite crystals is washed with deionized (DI) water two times
for 10min at each step to remove the residual KOH. Finally, the PMMA film
is fished out of the DI water on a TEM grid. The TEM grid covered with the
PMMA film is left uncovered for drying out naturally. Finally, the PMMA is
washed out by dissolving it in acetone while the crystals are transferred on
the TEM grid.

Experimental setup
The Raman spectrum is acquired in a reflection microscope setup, where a
632.8 nm He–Ne laser beam is passed through a linear polarizer and a half-
wave plate (HWP) and then focused on the lengenbachite flake using a
40× objective lens (NA = 0.65). The back‐reflected light is collected by the
same objective lens and directed to an optical spectrometer (Horiba, iHR
520) using a beam splitter. The Rayleigh scattered light of the laser is then
filtered out using a longpass filter (Semrock, LP02‐633RE‐25) in front of the
spectrometer. The parallel and perpendicular polarization components of
the Raman spectrum are analyzed using another linear polarizer before the
spectrometer.
For the polarization‐dependent absorption measurement, light from a

broadband white light source (Thorlabs, SLS201L, 360–2600 nm) is passed
through a linear polarizer and focused on the lengenbachite flake using a
80× objective lens (NA = 0.5). The reflection spectrum is obtained by
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collecting the back‐reflected light from the flake using the same objective
lens and directing it to the spectrometer with a beam splitter, while the
transmission spectrum is collected using a 100× objective lens (NA = 0.7).
An iris is used to spatially filter out a small area of the flake in both the
cases. After normalizing the reflection and transmission spectra with
the source spectra, reflectance (R) and transmittance (T) are measured.
Finally, the absorbance (A) spectrum is obtained by using the relationship
A = 1 – R – T.
For the THG measurements, a femtosecond pulsed laser beam at the

fundamental wavelength of 1560 nm (Calmar fiber laser, pulse width
90 fs, repetition rate 80 MHz) is transmitted through a linear polarizer and
a rotating HWP to set the incident linear polarization angle, and then
focused onto the lengenbachite flake using a 40× objective lens (NA =
0.65). For the spectral characterization, the transmitted THG emission
from the flake is collected by another 100× objective lens (NA = 0.7) and
directed towards a spectrometer (Horiba iHR 520). The contribution of the
fundamental beam is spectrally filtered out using a shortpass filter
(Thorlabs, FESH 900). For the imaging collection, the THG emission is
focused onto a color charge‐coupled device (CCD) camera instead of the
spectrometer. For the generation of radially and azimuthally polarized
vector beams, the linearly polarized fundamental laser beam is passed
through a zero-order vortex HWP (Thorlabs, WPV10L-1550) and then
focused onto the lengenbachite flake. For the generation of the vortex
beam with TC = 1, the linear polarization of the incident laser beam is
converted into circular polarization by passing through a quarter-wave
plate and a zero-order vortex HWP.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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